The 14 October 2008 moderate magnitude sequence offshore NE Evia Island (Aegean Sea): Fast Time-domain Moment tensors and shake map

Zafeiria Roumelioti and Anastasia Kiratzi

Department of Geophysics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece (e-mail: <u>Kiratzi@geo.auth.gr</u>)

Abstract

The sequence of 14 October 2008 Mw 5.1 offshore Evia Island occurred at the westernmost termination of the North Anatolian Fault Zone into the Aegean. The focal mechanisms of six of the stronger events clearly show normal faulting with considerable dextral strike slip component. We obtained the slip model for the strongest GMT 02:06 event, we identified the NE-SW trending plane that dips to the NW as the fault plane, with its slip vector trending N36°E following the trend of the shear motion transferred from the east.

Introduction

This is a short report for the 14 October 2008 moderate magnitude (Mw5.1) sequence offshore the NE coast of Evia Island, facing the Aegean Sea. Evia Island (Greece) lies in the transition zone from strike-slip faulting in the east, due to the strands of the North Anatolian Fault (NAF) that enter to the Aegean Sea, to normal faulting in the west along central Greece. From this point of view its pattern of deformation is always interesting, to seek for example the mode in which the shear motion from the east is crossing into mainland Greece. As no strong earthquake has occurred in Evia Island during instrumental times, we have to extract tectonic information from moderate size seismicity, like this one. Previous work (Hatzfeld et al., 1999; Kiratzi, 2002) has shown that the deformation in northern Evia Island is taken up mainly by normal and strike-slip faulting. Depending on the orientation of the activated faults, in respect to the present state stress field, dextral or sinistral horizontal motion is observed. The recent earthquakes showed that an almost N-S extensional field prevails in NE Evia Island with a few strike-slip focal mechanisms, suggesting that this part is mostly affected by the normal faulting system of central Greece.

Here, we present fast moment tensor solutions for the stronger events of the sequence and also we provide the shake Map for the strongest Mw 5.1 event, which we obtained from the slip model.

The focal mechanisms of the 14 October 2008 stronger earthquakes

The computation procedure followed in AUTH (Roumelioti et al., 2008a) is based on the Time-Domain Moment Tensor inversion method (TDMT_INV) developed at the Berkeley Seismological Laboratory (Dreger, 2002, 2003), as it has been further modified for fast applications in Greece (Roumelioti et al., 2008a). Full waveforms of the three recorded components of motion are lowpass filtered and inverted to derive the moment tensor. The tensor is then decomposed into a scalar seismic moment, double couple (*DC*) orientation components and a percentage of compensated linear vector dipole (*CLVD*). All broad band waveforms were retrieved from the Unified Hellenic Seismological Network. Prior to the inversion procedure the waveforms were bandpass filtered between 0.02 - 0.08 Hz and re-sampled to a frequency of 1 Hz. Synthetic Green's functions were constructed using the FKRPROG code of Saikia (1994)and the velocity model of Novotny et al. (2001).

We computed moment tensor solutions for the six stronger earthquakes (**Table 1**) and we indicatively show in **Figure 1** the waveform fit for the strongest Mw5.1 event. Table 2 lists the focal parameters of events on the Evia Island, and all solutions are shown in **Figure 2**.

Figure 1. Waveform fit for the 14 October 2008 GMT 02:06 earthquake (No 1 in Table 1). For each station the vertical, tangential and radial components are shown. Observed waveforms are represented with solid lines and synthetics with dashed lines.

Figure 2. The 14 October 2008 focal mechanisms (orange beach-balls) and previous focal mechanisms determined by waveform modelling available for Evia Island (Table 1 and 2). Clearly normal faulting is prevailing combined with strike-slip motions. For the 2008 events the fault plane for the Mw 5.1 event is the one that dips to the NE, implying dextral strike-slip motion and a slip vector trending N36^oE. Note also the mechanisms connected with the most recent 2003 swarm near the town of Psaxna, a rock burst region in Evia, like the twon of Mandoudi which was close to the 2008 events.

Roumelioti, A. and A. Kiratzi (2008). The 14 October 2008 moderate magnitude sequence offshore NE Evia Island (Aegean Sea): Time-domain Moment tensors and shake map, Report submitted to EMSC, pp.6

Slip model for the Oct 14, GMT 02:06 Mw 5.1 event

To obtain the slip distribution model for the GMT 02:06 Mw 5.1 event (**Figure 3**) we used the methodology of Dreger and Kaverina (2000) and Kaverina et al. (2002), in which regional distance ground motions recorded on broadband instruments are inverted for slip following the representation theorem for an elastic dislocation. We use a variety of simplifying assumptions including constant rupture velocity and dislocation rise time. We further apply slip positivity, seismic moment minimization and smoothing constraints to provide stability to the inversion. The description of the application of the method in Greece is described in Roumelioti et al. (2008b) and Kiratzi et al. (2008).

Both nodal planes are tested and the methodology applied is capable of uniquely determining the causative fault plane of the earthquake, the dimensions of the slip patches (both along strike and down dip), the earthquake rupture velocity, and a reasonable characterization of the gross slip distribution, suggesting that the derived source parameters may be used to simulate near-source strong ground motions. For the Mw 5.1 event the nodal plane that dips to the NW (that is the one with strike 250°) was statistically detected as the fault plane. This implies that the azimuth of the slip vector is N36°E and its plunge 26°. Thus the slip vector is in accordance with the direction of the shear motion transferred from the east (Kiratzi, 2002).

Figure 3. Slip distribution (slip in cm) for the October 14, 2008; GMT 02:06 Mw5.1 event, onto the fault plane (e.g. the nodal plane that dips to the NW in Fig. 1). The area of strongest slip is $\sim 4 \text{ km x } 4 \text{ km}$ and is not collocated with the initiation of the rupture (asterisk). Note that the 0 in this figure corresponds to the depth of 8 km obtained from the MT solution.

Deterministic Computation of PGV maps (Shake Map) for the strongest Mw 5.1 event

We used the regionally derived slip model (Fig. 3) to simulate the distribution of near-source strong ground motion and obtain PGV and intensity maps (**Fig. 4**). The method as applied in Greece is described in Roumelioti et al., 2008b and Kiratzi et al., 2008. The predicted strong motion parameters are improved by applying site corrections to the synthetic ground motions, based on the procedure implemented by Wald and Allen (2007) who classified the site geology based on the topography gradient as a proxy. For reasons of comparison we also compute PGV, PGA maps using empirical relations applicable to Greece, as proposed by Skarlatoudis et al. (2003, 2007).

Roumelioti, A. and A. Kiratzi (2008). The 14 October 2008 moderate magnitude sequence offshore NE Evia Island (Aegean Sea): Time-domain Moment tensors and shake map, Report submitted to EMSC, pp.6

Figure 4. Top panels: Left - Distribution of synthetic PGV's for the 14 Oct. 2008 Mw5.1 event, based on the slip model of Fig. 3. Right- Distribution of macroseismic intensities calculated from the PGV values. The intensities are moderate due to the moderate size of the event. Lower panels: Distribution of PGA and PGV's obtained using the empirical relations of Skarlatoudis et al. (2003, 2007) for comparison.

Roumelioti, A. and A. Kiratzi (2008). The 14 October 2008 moderate magnitude sequence offshore NE Evia Island (Aegean Sea): Time-domain Moment tensors and shake map, Report submitted to EMSC, pp.6

	Date	hh:mm:ss	Lat N	Lon E	h (km)	Mw	strike1	dip1	rake1	strike2	din 2	raka2	Daz	Dol	Toz	Tol	CLVD	VR
											uipz	upz rakez		грі	IdZ	τpi	%	%
1.	20081014	02:06:36.5	38.820	23.620	8.00	5.10	250	41	-138	126	64	-57	82	57	193	13	5	81
2.	20081014	02:17:01.7	38.750	23.580	9.00	4.40	244	28	-128	106	68	-72	45	62	182	21	6	83
3.	20081014	02:35:47.0	38.850	23.620	7.00	4.00	244	41	-117	98	54	-68	62	71	173	7	3	97
4.	20081014	03:13:32.5	38.840	23.620	7.00	3.60	230	37	-146	112	70	-58	61	53	179	19	7	93
5.	20081014	03:27:29.4	38.830	23.570	7.00	3.20	249	37	-161	144	79	-54	89	44	207	25	14	86
6.	20081014	04:39:41.0	38.850	23.550	7.00	3.40	252	25	-146	131	76	-69	67	54	204	28	1	99

 Table 1
 Focal mechanism parameters of the 14 Oct 2008 sequence offshore Evia Island determined here

Table 2 Focal mechanism parameters of previous earthquakes on the Evia Island, as determined elsewhere. All mechanisms are based on waveform inversion.

1.	Date	hh:mm:ss	Lat N	Lon E	h (km)	Mw	strike1	dip1	rake1	strike2	dip2	rake2	Paz	Ppl	Taz	Tpl	Ref
2.	20030613	16:06:34.0	38.580	23.590	4.00	4.30	90	60	-117	316	39	-51	313	64	199	11	1
3.	20030613	16:30:29.0	38.580	23.580	5.00	4.30	97	51	-96	286	39	-83	335	83	191	6	1
4.	20030613	20:22:02.0	38.570	23.550	8.00	4.40	135	44	-120	354	53	-64	323	69	66	5	1
5.	20030616	15:18:57.0	38.580	23.570	5.00	4.00	84	64	-106	297	30	-61	324	67	186	18	1
6.	20030618	05:25:02.0	38.600	23.600	5.00	4.70	51	43	-138	288	63	-55	246	57	354	11	1
7.	20030619	01:00:04.0	38.570	23.560	5.00	4.00	99	57	-85	270	33	-98	25	77	185	12	1
8.	20030619	01:03:56.0	38.570	23.580	5.00	4.30	92	52	-86	266	38	-95	22	82	179	7	1
9.	20030619	03:38:22.0	38.570	23.580	4.00	4.50	89	51	-100	285	40	-78	311	80	186	6	1
1(20030621	03:29:19.0	38.580	23.590	4.00	3.60	125	66	-77	275	27	-117	59	66	205	20	1
1'	20030626	13:45:58.0	38.570	23.740	4.00	4.40	78	54	-111	291	41	-64	294	72	183	7	1
1:	20030701	06:22:50.0	38.580	23.540	5.00	4.30	80	69	-103	293	25	-59	328	64	180	23	1
1:	20030704	03:24:36.0	38.580	23.550	5.00	4.00	71	66	-110	293	31	-52	308	63	176	19	1
14	20030705	13:00:13.0	38.580	23.550	4.00	3.60	132	46	-65	278	49	-114	119	72	25	2	1
1!	20040116	17:10:25.0	38.580	23.560	4.00	4.00	77	71	-111	307	28	-44	318	59	183	23	1
1(20060608	14:38:37.0	38.610	23.750	8.00	4.20	264	55	-83	72	36	-100	201	79	349	10	2
1.	20060701	14:36:48.0	38.730	23.530	8.00	3.60	286	57	-52	51	49	-133	253	58	350	5	2
18	20060816	18:56:41.0	38.540	24.000	12.00	4.40	125	49	-79	288	42	-103	95	81	207	4	2
19	20070814	06:09:31.0	38.530	23.720	10.00	3.60	299	49	-58	75	50	-122	278	66	187	1	3

1 Benetatos et al., 2004; 2 Roumelioti et al., 2008 in prep; 3 National Observatory of Athens (NOA)

Acknowledgements

Thanks are due to Douglas Dreger from the Seismological Laboratory, University of Berkeley, California for his support and cooperation. This research was financed by the General Secretariat of Research and Technology (GSRT), Ministry of Development of Greece. Most of the maps were produced using the GMT software (Wessel and Smith, 1998).

References

- Benetatos C., Kiratzi A., Kementzetzidou K., Roumelioti Z., Karakaisis G., Scordilis E., Latoussakis I. and G. Drakatos (2004). The Psachna (Evia Island) earthquake swarm of June 2003. "Bulletin of the Geological Society of Greece", Vol. XXXVI (3), 1379 - 1388.
- Dreger D. S. (2002). Time-Domain Moment Tensor INVerse Code (TDMT_INVC) Version 1.1, Berkeley Seismological Laboratory, pp. 18.
- Dreger D. S. (2003). TDMT_INV: Time Domain Seismic Moment Tensor INVersion, International Handbook of Earthquake and Engineering Seismology, W. H. K. Lee, H. Kanamori, P. C. Jennings and C. Kisslinger (eds.), Vol. B, pp. 1627.
- Dreger, D. S., & Kaverina A., (2000), Seismic remote sensing for the earthquake source process and near-source strong shaking: a case study of the October 16, 1999 Hector Mine earthquake, Geophys. Res. Lett. 27,
- pp. 1941–1944. Hatzfeld, D., Ziazia, M., Kemenzetzidou, D., Hatzidimitriou, P., Panagiotopoulos, D., Makropoulos, K., Papadimitriou, P. & Deschamps, A., 1999. Microseismicity and focal mechanisms at the western termination of the North Anatolian Fault and their implications for continental tectonics. Geophys. J. Int., 137, 891-908.
- Kaverina A., Dreger D., & Price E., (2002). The Combined Inversion of Seismic and Geodetic Data for the Source Process of the 16 October 1999 Mw 7.1 Hector Mine, California, Earthquake, Bull. Seism. Soc. Am. 92, рр. 1266-1280.
- Kiratzi A., 2002. Stress tensor inversions along the westernmost North Anatolian Fault Zone and its continuation
- Kiratzi, A., Roumelioti, Z. and C. Benetatos (2008). Real-time Seismology and Shake Maps in Greece. Proc. of the 31st General Assembly of the European Seismological Commission, ESC 2008, Hersonissos, Crete, Greece, 7-12 September 2008, pp. 228- 236.
- Novotný O., Zahradník J., & Tselentis G.-A. (2001). North-Western Turkey earthquakes and the crustal structure inferred from surface waves observed in Western Greece, Bull. Seismol. Soc. Am., 91, pp. 875-879.
- Roumelioti, Z., Benetatos, C., Kiratzi, A. & D. Dreger (2008a). Near-real time moment tensors for earthquakes in Greece based on seismological data of the Hellenic Unified Seismological Network, 3rd National Conference of Earthquake Engineering and Engineering Seismology, Athens, 5-7 November, 2008, paper ID:1789.
- Roumelioti, Z., Kiratzi, A. & D. Dreger (2008b). Near-Real Time Shake Maps for Earthquakes in Greece: pilot application, 3rd National Conference of Earthquake Engineering and Engineering Seismology, Athens, 5-7 November, 2008, paper ID: 2105.
- Saikia C. K. (1994). Modified frequency-wavenumber algorithm for regional seismograms using Filon's quadrature; modeling of Lg waves in eastern North America, Geophys. Journ. Int., 118, pp. 142-158.
- Skarlatoudis, A. A., Papazachos C. B., Margaris B. N., Theodulidis N., Papaioannou Ch., Kalogeras I., Scordilis E. M., & Karakostas V., (2003). Empirical peak ground-motion predictive relations for shallow earthquakes in Greece, Bull. Seism. Soc. Am. 93, pp. 2591-2603.
- Skarlatoudis, A. A., Papazachos C. B., Margaris B. N., Theodulidis N., Papaioannou Ch., Kalogeras I., Scordilis E. M., & Karakostas V., (2007). Erratum to "Empirical peak ground-motion predictive relations for shallow earthquakes in Greece, Bull. Seism. Soc. Am. 97(6), pp. 2219-2221, doi: 10.1785/0120070176.
- Wald, D. J., & Allen T. I., (2007). Topographic slope as a proxy for seismic site conditions and amplification, Bull. Seism. Soc. Am. 97(5), pp. 1379-1395, doi: 10.1785/0120060267.
- Wessel, P., & Smith, W.H.F., (1998). New improved version of the Generic Mapping Tools released", EOS Trans. AGU 79, 579.